Estes robôs conversacionais refletem os preconceitos de género, éticos e morais dos humanos presentes nos textos dos quais se alimentam, recorda o estudo publicado na quarta-feira na revista Open Science da Royal Society britânica.
Mas eles também refletem estes preconceitos nos testes de raciocínio?, questionou Olivia Macmillan-Scott, doutoranda do departamento de Ciências da Computação da University College de Londres (UCL).
O resultado da pesquisa é que os LLM mostram "um raciocínio muitas vezes irracional, mas de uma forma diferente da dos humanos", explica a investigadora à AFP.
Sob a supervisão de Mirco Musolesi, professor e diretor do Machine Intelligence Lab da UCL, Macmillan-Scott apresentou sete modelos de linguagem — duas versões do ChatGPT (3.5 e 4), da OpenAI, Bard, do Google, Claude 2, da Anthropic, e três versões de LLaMA, da Meta — a uma série de testes psicológicos desenvolvidos para humanos.
Como esta tecnologia aborda o preconceito que leva a privilegiar soluções com um maior número de elementos, em detrimento daquelas com uma proporção adequada?
Um exemplo: se tivermos uma urna com nove bolinhas brancas e uma vermelha e outra urna com 92 bolinhas brancas e 8 vermelhas, qual devemos escolher para ter a melhor hipótese de obter uma bolinha vermelha?
A resposta correta é a primeira urna, visto que há 10% de possibilidades face a 8% da segunda opção.
As respostas dos modelos de linguagem foram muito inconsistentes. Alguns responderam corretamente ao mesmo teste seis em cada dez vezes. Outros apenas duas em cada dez, embora o teste não tenha mudado. "Cada vez obtemos uma resposta diferente", diz a pesquisadora.
Os LLM "podem ser bons para resolver uma equação matemática complicada, mas de seguida dizem que 7 mais 3 é igual a 12", constatou.
"Não tenho muita certeza"
Estes modelos "não falham nestas tarefas da mesma forma que um humano", afirma o estudo. É o que Musolesi chama de "erros de máquina".
"Existe uma forma de raciocínio lógico que é potencialmente correta se a considerarmos por etapas, mas que é errada tomada como um todo", ressalta.
A máquina funciona com "uma espécie de pensamento linear", diz o professor, e cita o modelo Bard (atual Gemini), capaz de realizar corretamente as diferentes fases de uma tarefa, mas que obtém um resultado final incorreto por não ter uma visão geral.
Sobre esta questão, o professor de ciências da computação Maxime Amblard, da University of Lorraine, em França, recorda que os LLM, como todas as inteligências artificiais generativas, não funcionam como os humanos".
Os humanos são "máquinas capazes de criar significado", o que as máquinas não conseguem, explica à AFP.
Existem diferenças entre os diferentes modelos de linguagem e em geral, o GPT-4, sem ser infalível, obteve resultados melhores que os restantes.
Macmillan-Scott suspeita que os modelos "fechados", cujo código operacional permanece secreto, "incorporam mecanismos em segundo plano" para responder a questões matemáticas.
De todo o modo, neste momento é impensável confiar uma decisão importante a um LLM. Segundo o professor Musolesi, deveriam ser treinados para responder "não tenho muita certeza" quando necessário.
Comentários